<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT DESCRIPTION</td>
<td>3</td>
</tr>
<tr>
<td>OPERATION CONTROL AND FUNCTIONS</td>
<td>4</td>
</tr>
<tr>
<td>FRONT/REAR PANEL</td>
<td>4</td>
</tr>
<tr>
<td>CONNECTOR PIN OUT ASSIGNMENT</td>
<td>8</td>
</tr>
<tr>
<td>SYSTEM SETUP</td>
<td>9</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td>53</td>
</tr>
<tr>
<td>SERVICE PROCEDURE</td>
<td>54</td>
</tr>
<tr>
<td>REPLACEMENT POLICY</td>
<td>54</td>
</tr>
<tr>
<td>RETURN AND REPAIR SERVICE</td>
<td>54</td>
</tr>
<tr>
<td>LIMITED WARRANTY</td>
<td>55</td>
</tr>
<tr>
<td>APPENDIX A: API SERIAL COMMANDS</td>
<td>56</td>
</tr>
</tbody>
</table>
The AVoIP HDMI/VGA Encoder (Tx) & Decoder (Rx) with PoE (over Fiber or CAT 5e) provides stunning 4K video distribution at a very cost effective price point. Engineered for simplicity in mind, the AVoIP System is designed to operate exactly like a conventional Matrix Switcher and is configured to work out of box with no IP knowledge required. The AVoIP Matrix Switching Controller automatically detects devices connected to the Encoder/Decoder and the BCI App provides drop down menu simplicity for configuring all connected devices. Featuring advanced EDID along with HDCP management and extremely low latency video. This is an ideal solution for digital signage with advanced video wall processing and video distribution for training rooms, classrooms and conference rooms.

FEATURES

- Leveraging advanced network IP video technology for conventional 18G 4K HDMI video matrix switching
- Operates exactly like a conventional HDMI video matrix switcher, via API commands or virtual key buttons
- Perfect for users with minimum IP network knowledge/experience
- Accommodate up to HDMI 1.4 (4K@30Hz, 4:4:4) signals, with external audio, RS-232, IR, and USB
- Extend and switch HDMI 1.4 video over CAT-5e/6 cable up to 100m, with negligible latency
- >100x100 input/output routing, based on Cisco SG300/500 Gigabit Ethernet switcher
- Remote powering via POE
- Support RS-232, Telnet, and Web GUI control
- Virtual front-panel buttons for quick, manual operation
LBN-MST Front Panel

1. Power LED (top) – This LED illuminates amber when unit is powered ON
 Link – This LED illuminates solid green when a source is connected. This LED flashes when there is no source connected.
2. RS-232 port – Connect to RS-232 port of external device.
3. IR Decoder – Connect to an IR Decoder cable.
4. IR Emitter – Connect to an IR Emitter cable.
5. Channel DIP Switch – Not used. Reserved
6. VGA loopback – connect to a display to view non-HDCP HDMI content

LBN-MST Rear Panel

1. RJ45 – Gigabit Ethernet port (supports PoE). Connect to a Gigabit Ethernet switch.
2. SFP – SFP cage for SFP fiber module.
3. HDMI In – Connect to an HDMI source.
4. VGA In – Connect to a VGA source.
5. Line in – Stereo analog audio input. Connect to an analog audio source using a 3.5mm stereo cable.
6. Line out – Stereo analog audio output. Connect to amplifier input using a 3.5mm stereo cable.
7. USB host port – Connect to PC USB port.
8. DC power jack – Connect to 12VDC power supply. 12VDC power supply is not needed if using a PoE Ethernet switch.
1. Power LED (top) – This LED illuminates amber when unit is powered ON.
 Link – This LED illuminates solid green when connected to an encoder. This LED flashes when it is establishing a connection. It is off when not connected to any encoder.

2. RS-232 port – Connect to RS-232 port of external device.
3. IR Decoder – Connect to an IR Decoder cable.
4. IR Emitter – Connect to an IR emitter cable.
5. Channel DIP Switch – Not used. Reserved
7. Video Mode button – Reserved.
8. USB port – Connect to keyboard or mouse.
9. USB 2.0 port – Connect to USB device.
LBN-MSR Rear Panel

1. RJ45 – Gigabit Ethernet port (supports PoE). Connect to a Gigabit Ethernet switch.
2. SFP – SFP cage for SFP fiber module.
3. HDMI Out – Connect to HDMI input on the display.
4. VGA Out – Connect to VGA input on the display.
5. Mic – Microphone input. Connect to a microphone using a 3.5mm stereo cable. Only works in unicast mode.
7. DC power jack – Connect to a 12VDC power supply. 12VDC power supply is not needed if using a PoE Ethernet switch.
LBN-MSC-P Front and Rear Panel

1. DC power jack – Connect to the included 19VDC power supply.
2. Audio output – reserved.
3. VGA output – reserved.
4. HDMI output – reserved.
5. Ethernet port – connect to Gigabit Ethernet switch using CAT5e cable.
6. SS USB ports – connect to optional USB-to-RS-232 adapter or USB-to-Ethernet adapter.
7. Power button – Not used. Unit will power on once 19VDC power supply is plugged in.
8. SS USB ports - connect to optional USB-to-RS-232 adapter or USB-to-Ethernet adapter.
9. Audio/headphone output – reserved.
3.1 RS-232 Pinout

Decoder

Encoder
SYSTEM SETUP

The following section describes the system setup for a simple 2x2 switcher.

System Checklist

LBN-MST Encoder (2)
LBN-MSR Decoder (2)
LBN-MSC-P Controller (1)
1G Ethernet Switch (1)
PC/Laptop (1)
HDMI Source (2)
Display (2)
HDMI cables (4)
CAT5E patch cables (5)

System Setup

1. Configure Ethernet switch: the Gigabit Ethernet switch must support 8k jumbo frame packets and IGMP snooping. Please refer to the Quick Install Guide for Certified Ethernet Switches.
2. Connect the encoder, decoder and controller to the Ethernet switch per setup diagram
3. Connect the encoder and decoder to the Ethernet switch using the CAT5E patch cables
4. Connect power supplies to the encoders and decoders if the Ethernet switch does not support PoE.
5. Connect the controller to the Ethernet switch using the CAT5E patch cable.
6. Connect power to the controller. It is not necessary to press the power button.
7. Connect the HDMI sources to the encoders
8. Connect the displays to the decoders.
Accessing Controller Web Server

There are 2 ways to access the controller:

Method #1: Using its Wi-Fi Hotspot:
- Connect power supply to the controller. Once power is plugged in, the controller will boot up
- By default, the controller will power up in hotspot mode. Use the PC/Laptop to connect to the hotspot. The controller hotspot will appear as lbn1g-xxxx-hotspot under the PC/Laptop’s Wi-Fi settings. The default password is Br0@data.
- Open a web browser and type 10.42.0.1 in the address bar. You may also use the special URL http://lbn1g-msx/

Method #2: Using the BCI Product Configuration Tool:
- Connect power supply to the controller. Once power is plugged in, the controller will boot up
- Connect the controller and a PC to an Ethernet switch
- Install and open the BCI Product Configuration Tool
- The controller’s IP address will appear

- Open a web browser and type the controller’s IP address to access the web UI.
Web UI Default Login Credentials

Default User Name: admin

Default Password: Br0@data

Video Routing

The Routing page provides a matrix view of encoders and decoders in the system. Decoders are shown on the left and encoders are shown on the top of the matrix. To set up a route, click on the box for the corresponding connection and a check mark will appear. Click on the Apply button to complete the route. An encoder can be routed to all decoders by clicking on All for the corresponding Encoder and then Apply. Un-route All can be done by clicking None and then Apply.
SYSTEM SETUP

EDID Management

After a box is checked to establish a connection, there is an option to copy the EDID from a connected decoder to the encoder by clicking the **EDID** button in the lower right corner. The **EDID** button turns green to indicate that the encoder is using the EDID from the selected decoder. If none of the EDID buttons are selected, the encoder uses the default internal EDID.

Presets

The current routes and EDID settings can be saved to a user defined preset. Click on the Save Preset button and the Save Preset window will pop up.

![Save Preset](image)

Type in the preset name and preset description and then click Save Preset. All saved presets are managed in the Presets page.

Encoders

The controller's web interface allows the user to easily manage and configure any encoder in the system.

Click the Encoders tab on the top menu bar to bring up the Encoders page.
This page shows a table of all the encoders in the system. The name of each encoder is shown on the left side of the table. Each encoder will have a default name which can be changed. Each encoder also has a unique physical identifier called the MAC Address. The MAC Address is also printed on a label attached to the outside of the device case. The operational status of each encoder is shown in the State column. The encoder states are defined as follows:

Attaching: Encoder is ready

Service On: Active source is plugged in

Unavailable: Encoder is disconnected

The configuration for one or more Encoders can be updated from a file. First select the Encoder to be updated by checking the box to the left of the Encoder name. Then click on the Browse button and browse to the update file (CSV format). Click on the Update button to start the update process. See Export Encoder Configuration in Advanced Encoder Configuration section for instructions on how to export a file.

Power LED

As an aid for setting up a system with a large number of Encoder units, the power LED on a Encoder can be set to blink so that a particular device can be easily identified amongst many other units. To blink the LED, set the Blink LED switch to the ON position. The LED will continue to blink until the switch is set to OFF.

Encoder Configuration

In the right hand column, click on the “List” icon to bring up the Encoder Settings pop up window.
Renaming an Encoder

In the General Configuration panel, type in a new name in the Encoder Name box. This panel also shows the encoder’s MAC address and IP address.

HDCP

The Encoder’s HDMI input supports HDCP 1.4 and HDCP 2.2. If you do not want the HDMI input to be HDCP compliant, uncheck the HDCP Compliant box.
Decoder

The controller’s web interface allows the user to easily manage and configure the decoder in the system.

Click the Decoder tab on the top menu bar to bring up the Decoder page.

This page shows a table of all the decoders in the system. The name of each decoder is shown on the left side of the table. Each decoder will have a default name which can be changed. Each decoder also has a unique physical identifier called the MAC Address. The MAC Address is also printed on a label attached to the outside of the device case. The operational status of each decoder is shown in the State column. The decoder states are defined as follows:

Idle: Decoder is ready

Service On: Decoder is streaming video

Unavailable: Decoder is disconnected

The **Connected to** column shows the encoder that the decoder is connected to.

The configuration for one or more Decoders can be updated from a file. First select the Decoder to be updated by checking the box to the left of the Decoder name. Then click on the Browse button and browse to the update file (CSV format). Click on the Update button to start the update process. See Export Decoder Configuration in Advanced Decoder Configuration section for instructions on how to export a file.

Power LED

As an aid for setting up a system with a large number of units, the power LED on a decoder can be set to blink so that the device can be easily identified amongst many other units. To blink the LED, set the Blink LED switch to the ON position. The LED will continue to blink until the switch is set to OFF.
Decoder Configuration

On the right hand column, click on the “List” icon to bring up the Decoder Settings pop up window.

Advanced Configuration for Decoder 4KTV

- **General Configuration**
 - **Decoder Name**: 4KTV
 - **Mac Address**: 8239B82B1BDC
 - **Ip Address**: 169.254.6.227

- **Video Configuration**

- **Audio Over Ip Settings**

- **Serial Interface Settings**

- **USB Over Ip Settings**

- **Keyboard and Mouse Over Ip (KMoIP) Settings**

- **HotKeys Routing Settings**

- **Export Decoder Configuration**

[Submit]
Renaming a Decoder

In the **General Configuration** panel, type in a new name in the **Decoder Name** box. This panel also shows the decoder’s MAC address and IP address.

![General Configuration Panel]

HDCP

In order to accommodate older displays that only support HDCP 1.4, the decoder supports the conversion of HDCP 2.2 to HDCP 1.4. In the Video Configuration panel, select the **HDCP Conversion** drop down list and select **HDCP 1.4 Always On** to enable this feature.

![Video Configuration Panel]
Scaler

The decoder is equipped with a flexible scaler that allows the HDMI output to be scaled to various commonly used resolutions. In the Video Configuration panel, select the Scaler Mode drop down list to select the desired output resolution. The supported resolutions include: Full HD 1080p60, Full HD 1080p50, Ultra HD 2160p30, Ultra HD 2160p25, WXGA (1366x768), WXGA+ (1440x900), WUXGA (1920x1200), SXGA+ (1400x1050). Select Pass-through to bypass the scaler and Auto to output the native resolution of the display.

Advanced Encoder Configuration

Audio

The analog audio input supports several options that can be selected in the Audio Over IP Settings.

Auto: If an analog audio input is plugged in, the HDMI embedded audio will be replaced by the analog audio. If no analog audio input is plugged in, the HDMI embedded audio will remain unmodified.

HDMI: The HDMI embedded audio will not be modified. The analog input audio is not used.

Analog: The analog input audio will replace the embedded HDMI audio.

Analog Input Volume: The slider adjusts the analog audio input volume level from 0 to 80.
RS-232 Port

The RS-232 port supports 2 modes of operation:
1) Pass-through
2) Control External Device

When the encoder is connected to a single decoder in Pass-through mode, the serial data from the external device connected to the encoder is directed to the RS-232 port of the associated decoder. When the encoder is connected to multiple decoders in Pass-through mode, the device connected to the decoders initiates the connection to the encoder based on a “first come first served” protocol. For example, the first decoder that transmits data to the encoder will have control of the serial connection. After 2 seconds of inactivity, the connection will be released and the next decoder can take control of the connection.

In both modes of operation, the RS-232 serial settings must be set to match the serial port settings of the connected device. The RS-232 port settings are configured in Serial Over IP Settings.

<table>
<thead>
<tr>
<th>Serial Over IP Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable Serial over IP</td>
</tr>
<tr>
<td>Baudrate</td>
</tr>
<tr>
<td>Data bits</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>Stop bits</td>
</tr>
<tr>
<td>Controls external device</td>
</tr>
</tbody>
</table>
Disable Serial over IP: Select this box to disable the serial over IP function. This box should be unselected for normal serial operation.

Baud rate: This menu selects the baud rate. The baud rate options are 300, 600, 1200, 2400, 4800, 9600, 19200, 3800, 57600, 115200.

Data bits: This menu selects the number of data bits. The number of data bits supported are 5, 6, 7 and 8.

Parity: This menu selects the parity. The parity options are None, odd and even.

Stop bits: This menu selects the number of stop bits. The stop bit options are 1 or 2.

Controls external device: When this box is selected, the server can be used to send command strings to the RS-232 port (see UARTSTR command in API).

USB

Disable USB over IP: Select this check box to disable the USB over IP function (KMoIP will still be operational if it is not disabled). This box should be unselected for normal USB operation.

Disable KMoIP: Select this box to disable the Keyboard and Mouse over IP feature. KMoIP enables keyboard and mouse emulation, which allows for fast keyboard/mouse switching. This box should be unselected for normal USB operation.

Export Encoder Configuration

The configuration of an Encoder can be exported to a file, which can be used to update one or more Encoders with the same configuration. Click on Export Encoder Configuration and then click Export. A file named encoders_config.csv will be saved to the local Downloads directory.
Advanced Decoder Configuration

Audio
The decoder analog audio output supports several options that can be selected in Audio Over IP Settings, Output Select drop down list.

- **Auto:** The analog audio output follows the HDMI audio.
- **HDMI:** The analog audio output follows the HDMI audio.
- **Analog:** The analog output audio is determined by the Analog audio input setting on the Encoder.

The Analog Output Volume slider adjusts the analog audio output volume level from 0 to 80.
RS-232 Port

The RS-232 port supports 3 modes of operation:

1) Pass-through
2) Control External Device
3) Control External Device (auto)

When the decoder is connected to a single encoder in Pass-through mode, the serial data from the external device connected to the decoder is directed to the RS-232 port of the associated encoder. When the encoder is connected to multiple decoders in Pass-through mode, the device connected to the decoder initiates the connection to the encoder based on a “first come first served” protocol. For example, the first encoder that transmits data to the encoder will have control of the serial connection. After 2 seconds of inactivity, the connection will be released and the next decoder can take control of the connection.

In Control External Device mode, an external control system can send serial strings directly to the RS-232 port of a encoder or decoder using the UARTSTR command. Alternatively, the external controller can establish a direct connection to the RS-232 port of a decoder or encoder using the OPENPORT command.

In Control External Device (auto) mode, the decoder can be configured to send serial strings out to the RS-232 port automatically when video is detected. Typically this mode is used to “turn on” a display when video is available at the decoder output. Up to 3 serial strings can be sent upon video detect. When video is no longer detected, a different serial string can be sent to “turn off” the display.

In all 3 modes of operation, the RS-232 port serial settings must be set to match the serial port settings of the connected device. The RS-232 port settings are configured in Serial Over IP Settings.

<table>
<thead>
<tr>
<th>Serial Over IP Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable Serial over IP</td>
</tr>
<tr>
<td>Baudrate 115200</td>
</tr>
<tr>
<td>Data bits 8</td>
</tr>
<tr>
<td>Parity none</td>
</tr>
<tr>
<td>Stop bits 1</td>
</tr>
<tr>
<td>Controls external device</td>
</tr>
</tbody>
</table>
SYSTEM SETUP

Disable Serial over IP: Select this box to disable the serial over IP function. This box should be unselected for normal serial operation.

Baud rate: This menu selects the baud rate. The baud rate options are 300, 600, 1200, 2400, 4800, 9600, 19200, 3800, 57600, 115200.

Data bits: This menu selects the number of data bits. The number of data bits supported are 5, 6, 7 and 8.

Parity: This menu selects the parity. The parity options are None, odd and even.

Stop bits: This menu selects the number of stop bits. The stop bit options are 1 or 2.

Controls external device: When this box is selected, the server can be used to send command strings to the RS-232 port (see UARTSTR command in API).

![Serial Interface Settings](image-url)
USB

Virtual hub

When a encoder (USB host) is connected to multiple decoders (USB devices), the host can be controlled from multiple decoder units at one time. Each decoder unit can use a USB device without interfering with other decoders.

Device Class Filtering

By setting up a default policy, one or more device classes can be blocked on a particular Decoder.

Under Default Policy, if Export all USB classes automatically is selected, then all USB device classes will be enabled unless a particular device class is disabled in the Except for: drop down list.

If Do not export USB classes automatically is selected, then all USB device classes will be disabled unless a particular device class is enabled in the Except for: drop down list.

In conjunction with the default policy, a specific vendor/id entered in the Disable Devices box will be disabled and a specific vendor/id entered in the Enable Devices box will be enabled.
Keyboard and Mouse

KMoIP enables keyboard and mouse emulation, which allows for fast keyboard/mouse switching. The Disable KMoIP box should be unselected for normal USB operation. KMoIP is enabled on USB port 1 and 2 by default. KMoIP can also be enabled on USB port 3 and 4 by selecting the check box next to the port.

Hotkeys Routing

A hotkey can be used to trigger a route to a particular encoder. Each hotkey is mapped as follows:

Hotkey 1 = <left ctrl>+1
Hotkey 2 = <left ctrl>+2
Hotkey 3 = <left ctrl>+3
Hotkey 4 = <left ctrl>+4
Hotkey 5 = <left ctrl>+5
Hotkey 6 = <left ctrl>+6
Hotkey 7 = <left ctrl>+7
Hotkey 8 = <left ctrl>+8

In the Hotkeys Routing Settings select the hotkey to be configured. From the drop down list, select a encoder to associate with the hotkey. When a hotkey is pressed 3 times in 750 ms, it will
Export Decoder Configuration

The configuration of a Decoder can be exported to a file, which can be used to update one or more Decoders with the same configuration. Click on Export Decoder Configuration and then click Export. A file named decoders_config.csv will be saved to the local Downloads directory.

RS-232 Command Line Interface

The controller provides an RS-232 command line interface. An optional USB-to-RS232 adapter must be plugged into one of the available USB ports and connected to your PC/laptop's RS-232 port as shown below:

Using a terminal console program or 3rd party control processor, make a connection using the following default settings:

Baudrate: 19200
Data Bits: 8
Parity: None
Stop Bits: 1
Flow Control: None
Termination: Carriage Return CR (0x0D)

See Section 9.0 Appendix for serial API command list.
Network Control Interface

To obtain the controller’s IP address, type `ipconfig` in the command line interface.

If the controller is connected to a network via WiFi, make sure that your Laptop/PC is connected to the same network.

Accessing the Telnet port: Use a telnet client to connect to the IP address using port 23.

Default Username: **broadata**

Default Password: **Br0@data**

See Section 9.0 Appendix for serial API command list.

You can also connect the controller directly to the network by using a USB-to-Ethernet Adapter as shown below.

USB to Ethernet Adapter
Connect to network with an Ethernet cable
Updating Encoder/Decoder Device Firmware

Click the **System** tab on the top menu bar and select **Device Update** from the drop down list.

Select the box to the left of a particular Decoder to be updated or select **All** to select all decoders. The decoder can be updated from the cloud or from a file. Cloud update will always update to the latest firmware stored on the Broadata cloud server. From the update menu, select Update to <version> from cloud and then click on **Update**.

If Internet access is not available, a decoder can be updated from a file stored locally on the PC/laptop. From the update menu, select Update from file. Browse to the update file and then click on **Update**.

Follow the same procedure to update the encoder.
Updating Controller Firmware

Click the System tab on the top menu bar and select Server Update from the drop down list.

The server can be updated from the cloud or from a file just like the decoders and encoders.

Cloud update will always update the server to the latest firmware stored on the Broadata cloud server. From the update menu, select Update to <version> from cloud and then click on Update.

If Internet access is not available, the server can be updated from a file stored locally on the PC/laptop. From the update menu, select Update from file. Browse to the update file and then click on Update.

Connecting to Wifi

From the System drop down menu, select Wifi to bring up the Wifi Configuration pop up window.

Note: The MSX controller’s factory Wifi configuration turns on the server’s hotspot.

To turn Hotspot Off and connect to a local Wifi network, set the Hotspot switch to OFF. Enter the WiFi network ID and password and then click Submit. The server will reboot and connect to the selected Wifi network.

To turn Hotspot On, set the Hotspot switch to ON and click Submit. On your mobile device, go to Wifi settings and select the MSX hotspot, lb1g-xxxxx-hotspot. In hotspot mode, the server IP address defaults to **10.42.0.1**.
LBN-MSx Web Interface

Routing

Click on the Routing tab on the top menu bar to bring up the Routing page.

The Routing page provides a matrix view of Encoders and Decoders in the system. Decoders are shown on the left and Encoders are shown on the top of the matrix. To set up a route, click on the box for the corresponding connection and a check mark will appear. Click on the Apply button to complete the route. A Encoder can be routed to all Decoders by clicking on All for the corresponding Encoder and then Apply. Unroute All can be done by clicking None and then Apply.

EDID Management

After a box is checked to establish a connection, there is an option to copy the EDID from a connected Decoder to the Encoder by clicking the EDID button in the lower right corner. The EDID button turns green to indicate that the Encoder is using the EDID from the selected Decoder. If none of the EDID buttons are selected, the Encoder uses the default internal EDID.

Presets

The current routes and EDID settings can be saved to a user defined preset. Click on the Save Preset button and the Save Preset window will pop up.

Type in the preset name and preset description and then click Save Preset. All saved presets are listed in the Presets page.
Encoders

Encoder Status

Click the Encoders tab on the top menu bar to bring up the Encoder page.

All available encoders will be listed in the table. The State column indicates the current state of a particular encoder. The encoder states are defined as follows:

Attaching: Encoder is ready

Service On: Active source is plugged in

Unavailable: encoder is disconnected

The configuration for one or more Encoders can be updated from a file. First select the Encoder to be updated by checking the box to the left of the Encoder name. Then click on the Browse button and browse to the update file (CSV format). Click on the Update button to start the update process. See Export Encoder Configuration in Advanced Encoder Configuration section for instructions on how to export a file.

Blink LED

As an aid for setting up a system with a large number of units, the power LED on an encoder can be set to blink so that a particular device can be easily identified amongst many other units. To blink the LED, set the Blink LED switch to the ON position. The LED will continue to blink until the switch is set to OFF.
Encoder Settings

In the right hand column, click on the List icon to bring up the Encoder Settings pop up window.
General Configuration

Encoder Name: This box shows the encoder's name that can be user defined.

MAC address: This box shows the Encoder's MAC address.

IP address: This box shows the encoder's IP address.

Video Configuration

HDCP Compliant: Select this box to be compliant with HDCP sources.

HDCP Mode: This menu configures the HDCP encryption of the video content.

Note: Switching speed is optimized when switching between encoders with a common HDCP encryption.

HDCP 1.4 always on: the content will be encrypted with HDCP 1.4
HDCP 2.2 always on: the content will be encrypted with HDCP 2.2
None: the content's HDCP encryption will not be altered.
Audio Over IP Settings

Disable Audio over IP: Select this box to disable the audio over IP function. This box should be unselected for normal audio operation.

Analog Input Volume: This slider adjusts the analog audio input volume level from 0 to 80.

Input Select: This menu sets the operating mode of the analog audio input.

- **Auto:** If an analog audio input is plugged in, the HDMI embedded audio will be replaced by the analog audio. If no analog audio input is plugged in, the HDMI embedded audio will remain unmodified.
- **HDMI:** The HDMI embedded audio will not be modified. The analog input audio is not used.
- **Analog:** The analog input audio will replace the embedded HDMI audio.
Serial Over IP Settings

This panel is used to configure the RS-232 serial port settings.

Disable Serial over IP: Select this box to disable the serial over IP function. This box should be unselected for normal serial operation.

Baud rate: This menu selects the baud rate. The baud rate options are 300, 600, 1200, 2400, 4800, 9600, 19200, 3800, 57600, 115200.

Data bits: This menu selects the number of data bits. The number of data bits supported are 5, 6, 7 and 8.

Parity: This menu selects the parity. The parity options are None, odd and even.

Stop bits: This menu selects the number of stop bits. The stop bit options are 1 or 2.

Controls external device: When this box is selected, the server can be used to send command strings to the RS-232 port (see UARTSTR command in API).
USB Over IP Settings

Disable USB over IP: Select this check box to disable the USB over IP function (KMoIP will still be operational if it is not disabled). This box should be unselected for normal USB operation.

Keyboard and Mouse Over IP Settings

Disable KMolIP: Select this box to disable the Keyboard and Mouse over IP feature. KMolIP enables keyboard and mouse emulation, which allows for fast keyboard/mouse switching. This box should be unselected for normal USB operation.

Export Encoder Configuration

The configuration of an Encoder can be exported to a file, which can be used to update one or more Encoders with the same configuration. Click on **Export Encoder Configuration** and then click **Export**. A file named `encoders_config.csv` will be saved to the local Downloads directory.
Decoders

Decoder Status

Click the Decoders tab on the top menu bar to bring up the Decoders page.

All available decoders will be listed in the table. The **State** column indicates the current state of a particular decoder. The decoder states are defined as follows:

- **Idle**: Decoder is ready
- **Service On**: Decoder is streaming video
- **Unavailable**: Decoder is disconnected

The **Connected to** column shows the encoder the decoder is connected to.

The configuration for one or more Decoders can be updated from a file. First select the Decoder to be updated by checking the box to the left of the Decoder name. Then click on the Browse button and browse to the update file (CSV format). Click on the Update button to start the update process. See **Export Decoder Configuration** in **Advanced Decoder Configuration** section for instructions on how to export a file.

Blink LED

As an aid for setting up a system with a large number of units, the power LED on a Decoder can be set to blink so that the device can be easily identified amongst many other units. To blink the LED, set the Blink LED switch to the **ON** position. The LED will continue to blink until the switch is set to **OFF**.
Decoder Settings

In the right hand column, click on the List icon to bring up the Decoders Settings pop up window.
General Configuration

Decoder Name: This box shows the decoder name that can be user defined.

MAC Address: This box shows the decoder’s MAC address.

IP Address. This box shows the decoder’s IP address.

MAC Address: This box shows the decoder’s MAC address.

IP Address. This box shows the decoder’s IP address.
Video Configuration

Screen Rotation: This menu allows the display orientation to be rotated 90, 180 or 270 degrees.

HDCP Conversion: This menu configures the HDCP encryption of the output video content.

- **HDCP 1.4 always on**: the content will be encrypted with HDCP 1.4
- **HDCP 2.2 always on**: the content will be encrypted with HDCP 2.2
- **None**: the content's HDCP encryption will not be altered.

Scaler Mode: This menu selects whether the scaler is enabled or bypassed. The scaler output resolutions are: Full HD 1080p60, Full HD 1080p50, Ultra HD 2160p30, Ultra HD 2160p25, WXGA (1366x768), WXGA+ (1440x900), WUXGA (1920x1200), SXGA+ (1400x1050).

Audio Over IP Settings

Disable Audio over IP: Select this box to disable the audio over IP function. This box should be unselected for normal audio operation.

Analog Output Volume: The volume slider adjusts the analog audio output volume level from 0 to 80.

Output Select: This menu sets the operating mode of the analog audio output.

- **Auto**: The analog audio output follows the HDMI audio.
- **HDMI**: The analog audio output follows the HDMI audio.
- **Analog**: The analog output audio is determined by the Analog audio input setting on the Encoder.
Serial Over IP Settings

This panel is used to configure the RS-232 serial port settings.

Disable Serial over IP: Select this box to disable the serial over IP function. This box should be unselected for normal serial operation.

Baud rate: This menu selects the baud rate. The baud rate options are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.

Data bits: This menu selects the number of data bits. The number of data bits supported are 5, 6, 7 and 8.

Parity: This menu selects the parity. The parity options are None, odd and even.

Stop bits: This menu selects the number of stop bits. The stop bit options are 1 or 2.
Controls External Device: Select this check box to enable the automatic transmission of serial strings to an external device when video is active.

![Serial Interface Settings](image)

Strings to be transmitted as Hex digits: Select this box to transmit hex strings.

Line Terminator: Select line terminator CR, LF or CR+LF.

Turn On String 1: First string to be transmitted upon video active.

Turn On String 2: Second string to be transmitted upon video active.

Turn On String 3: Third string to be transmitted upon video active.

Turn On Interval: Delay in seconds between transmission of strings.

Turn Off String: String to be transmitted once output video is no longer active.

Turn Off Delay: Delay in seconds before string is transmitted after output video is no longer active.
USB Over IP Settings

![USB Over IP Settings](image)

Disable USB over IP: Select this check box to disable the USB over IP function (KMolIP will still be operational if it is not disabled). This box should be unselected for normal USB operation.

Default Policy:

- Export all USB device classes automatically: this option enables all USB device classes.
- Do not export USB classes automatically: this option will disable all USB devices classes.

Except for: If Export all USB device classes automatically is selected, this menu is used to disable one or more specific device classes. If Do not export USB classes automatically is selected, this menu is used to enable one or more specific device classes.

Disable devices: In conjunction with the default policy, a specific vendor/id entered in this box will be disabled.

Enable devices: In conjunction with the default policy, a specific vendor/id entered in this box will be enabled.

Conflict Policy:

- Auto export: In the event of a conflict in the export policy, all device classes will be exported.
- Do not auto export: In the event of a conflict in the export policy, all devices will not be exported.
keyboard and mouse over IP settings

Disable KMoIP: Select this box to disable the Keyboard and Mouse over IP feature. KMoIP enables keyboard and mouse emulation, which allows for fast keyboard/mouse switching. This box should be unselected for normal USB operation. KMoIP is enabled on USB port 1 and 2 by default. KMoIP can also be enabled on USB port 3 and 4 by selecting the check box next to the port.

Hotkeys Routing

A hotkey can be used to trigger a route to a particular Encoder. Each hotkey is mapped as follows:

- Hotkey 1 = <left ctrl>+1
- Hotkey 2 = <left ctrl>+2
- Hotkey 3 = <left ctrl>+3
- Hotkey 4 = <left ctrl>+4
- Hotkey 5 = <left ctrl>+5
- Hotkey 6 = <left ctrl>+6
- Hotkey 7 = <left ctrl>+7
- Hotkey 8 = <left ctrl>+8
In the Hotkeys Routing Settings select the hotkey to be configured. From the menu, select a Encoder to associate with the hotkey. When a hotkey is pressed 3 times in 750 ms, it will trigger a route to that particular Encoder.

![HotKeys Routing Settings](image)

Export Decoder Configuration

The configuration of a Decoder can be exported to a file, which can be used to update one or more Decoders with the same configuration. Click on Export Decoder Configuration and then click Export. A file named `decoders_config.csv` will be saved to the local Downloads directory.

System

Click on the System tab on the top menu bar for the System pull down menu.
Manage Users

From the System pull down menu, select Manage Users to bring up the Users admin page. The Users page allows an administrator to add authorized users to the system. Click on the Create User button to add a new user.

Enter Name, Username and Password for each new user and then click on the Create User button.
Encoder/Decoder Update

From the System pull down menu, select **Device Update** to bring up the Device Firmware Upgrade page.

- **Update Decoder/Encoder Firmware**

Select the box to the left of a particular Decoder to be updated or select **All** to select all decoders. The decoders can be updated from the cloud or from a file. Cloud update will always update to the latest firmware stored on the Broadata cloud server. From the update menu, select Update to <version> from cloud and then click on **Update**.

If Internet access is not available, a decoder can be updated from a file stored on a USB flash drive. From the update menu, select Update from file. Insert USB flash drive that contains the update file. Browse to the update file and then click on **Update**.

Follow the same procedure to update the encoder.
Server Update

From the System pull down menu, select **Server Update** to bring up the Server Update page.

![Server Update](image)

Similar to the encoders and decoders, the server can be updated from the cloud or from a file.

Cloud update will always update the server to the latest firmware stored on the Broadata cloud server. From the update menu, select Update to <version> from cloud and then click on **Update**.

If Internet access is not available, the server can be updated from a file stored on a USB flash drive. From the update menu, select Update from file. Insert USB flash drive that contains the update file. Browse to the update file and then click on **Update**.

Wifi

From the System pull down menu, select **Wifi** to bring up the Wifi Configuration pop up window.

![Wifi Configuration](image)

Note: The MSX server’s factory Wifi configuration turns on the server’s hotspot.

To turn Hotspot Off and connect to a local Wifi network, set the Hotspot switch to OFF. Enter the WiFi network ID and password and then click Submit. The server will reboot and connect to the selected Wifi network.

To turn Hotspot On, set the Hotspot switch to ON and click Submit. On your mobile device, go to Wifi settings and select the MSX hotspot, “lbn1g-xxxxx-hotspot”. In hotspot mode, the server IP address defaults to 10.42.0.1.
Network Settings

From the System pull down menu, select Network Settings to bring up the Network Settings page. The network interface (AVoIP) operates in Auto IP mode by default. IP addresses in the range 169.254.x.x are automatically assigned to Encoders, Decoders and the local controller interface. The network can also operate in Static IP mode. In Static IP mode, static IP addresses can be manually assigned to Encoders, Decoders and the local controller interface.

Static IP Mode

Assign static IP address, Netmask and Gateway IP address to the controller in System Network IP Settings, then click the Save button.

Assign static IP addresses to the Encoders and Decoders in the Static IP Address box. The static IP addresses must be in the same range as the controller. Click the Save button.

At the top of the page, click on the Static IP Mode button to switch to static IP mode.

Caution: While operating in Static IP Mode, any new Encoder or Decoder that is plugged into the switch will not be discovered by the server because Encoders and Decoders operate in Auto IP mode by default.
Export devices IP Configuration file
The network settings for all devices can be exported to a .csv file. To export the IP configuration, click on the Export button.

A file named network_config.csv will be saved to the local Downloads directory. The .csv file can be manually edited using Excel. Only the device names and Static IP Addresses can be modified. After editing in Excel, the file must be saved as type CSV (Comma delimited).

Set static IP addresses from file
The static IP addresses for all devices can be updated from a file. After the network_config.csv file from above is edited, it can be used to update the static IP addresses of the devices. To update the IP configuration, click on the Browse button and browse to the .csv file. Then click on Update. The static IP addresses for the devices should update according to the file. If any names were changed in the file, the device name will also be updated. Lastly, click on the Static IP Mode button to switch to static IP mode.

About
From the System pull down menu, select About to bring up the About pop up window that shows the current software versions.

Turn Off
From the System pull down menu, select Turn Off to safely shutdown the server.
Video Wall

A video wall can be easily setup using the Video Wall setup page.

Video Wall Setup

Click on the **Video Wall** tab on the top menu bar to bring up the Video Wall setup page. To create a new video wall, click on **New Video Wall**. In the Save Video Wall pop up window, enter the video wall name and description and then click **Save**. The new Video Wall name will now appear on the Video Wall setup page. To configure the video wall, click the List icon on the right and the setup window will pop up.
Select the Image Preferences and enter the bezel and gap compensation values. Values are in units of 1 mm and must be integers. Next define the size of the video wall by selecting the number of rows and columns. The video wall layout will reflect the row and column selection. The last step is to assign a Decoder to each position in the layout. Click on one of the positions and a list of Decoders will show up. Select the Decoder you want to assign to that position. Repeat for all positions and then click Submit. On the Video Wall page click on Enable to activate the video wall on the routing page. Note: A Decoder that has been assigned to an active video wall will no longer be available and will not appear in the routing page. A video wall must be disabled before its associated Decoders can be used.
Image Preferences:

Stretch Type: Select Fit In or Stretch

Clockwise Rotate: Select the image rotation of 90, 180 or 270 degrees.

Bezel and Gap Compensation

Width Ext: Enter the external width of the display in millimeters.

Height Ext: Enter the external height of the display in millimeters.

Width Active Area: Enter the width of the active area (width inside the bezel) in millimeters.

Height Active Area: Enter the height of the active area (height inside the bezel) in millimeters.

Wall Size and Devices Selection

Rows: Select the number of rows for the video wall.

Columns: Select the number of columns for the video wall.

Video Wall Layout

Assign a Decoder to the selected position in the video wall.

Presets

Click on the **Presets** tab on the top menu bar to bring up the Presets page.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Creator</th>
<th>Date Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>preset_1</td>
<td>all out to AppleTV</td>
<td>CLI</td>
<td>May 14th, 2019, 8:51:23 pm</td>
</tr>
<tr>
<td>preset_2</td>
<td>all out to gen</td>
<td>CLI</td>
<td>May 14th, 2019, 8:52:19 pm</td>
</tr>
</tbody>
</table>

All the presets that were saved on the Routing page are listed on this page. To restore one of the presets, click on the associated **Restore Preset** button. The Restore Preset confirmation window will pop up. Click on **Restore Preset** to complete the restore process. Unused presets can be deleted by clicking on the trash icon.
VIDEO/AUDIO SPECIFICATIONS

HDMI

- HDMI 1.4, up to 4K@30Hz 4:4:4 or 4K@60Hz 4:2:0 Embedded Audio: Stereo or 7.1 Surround Sound
- HDMI Female connector

VGA

- Up to 1920x1200 (WUXGA) @ 60Hz
- HD-15 connector

Port Count

- TX: 1-HDMI Input, 1-VGA Input, 1-VGA-Loopback
- RX: 1-HDMI Output and 1-VGA Output

AUDIO

External Audio

- 3.5mm mini-stereo jack

Port Control

- TX: 1-Line Input and 1-Line Output
- RX: 1-Mic Input and 1-Line Output

SERIAL DATA

Serial Rate

- RS-232

Data Rate

- Up to 115.2 KBAud

Connector

- DB-9

Port Count

- One RS-232 in TX and in RX

IR CONTROL

Data Rate

- 30-50 KHz

Connector

- 3.5mm Mini Jack

Port Count

- One IR Input/Output in TX and in RX

USB

Mode

- USB 2.0

Port Count

- One USB-Host in TX and Four USB-Device in RX

RJ-45

Cable Type

- CAT-5e/6

Distance

- Depending Cable Spec (up to 100m)

Connector

- RJ-45

PHYSICAL

- **Dimensions Standalone**: 7.75”(W) x 4.25”(D) x 1.1”(H)
- **Power Consumption**: 12 VDC @ 1 Amp (Max.)
- **Operating Temperature**: 0 to 40°C
- **Humidity**: 0 to 90% RH, Non-Condensing

CERTIFICATIONS

- CE, FCC

GREEN COMPLIANCE

- RoHS
Replacement Policy

Standard products found defective on arrival (DOA) will be replaced, based on availability, within 24 to 48 hours anywhere in the U.S. Please call Customer Service at 800-214-0222 for information.

Return/Repair Service

The LBN-MSx System contains no user serviceable components. If you have a problem with your unit, please contact the Customer Service Department. To facilitate our return/repair processing please contact Broadata Communications, Inc. to obtain a Return Material Authorization (RMA). Please include the following information:

- Product Model Number
- Serial Number
- Complete Description of Problem
- Hardware Installation Description
LIMITED WARRANTY

Broadata Communications, Inc. (BCI) warrants, for a period of one year from date of shipment, each product sold shall be free from defects in material and workmanship. BCI will correct, either by repair, or at BCI’s election, by replacement, any said products that in our sole discretion prove to be defective and are returned to the manufacturing location within 30 days after such defect is ascertained. All warranties are limited to defects arising under normal use and do not include malfunctions or failure resulting from misuse, abuse, neglect, alterations, electrical power problems, usage not in accordance with product instructions, improper installation, or damage determined by BCI to have been caused by the Buyer or repair made by a third party. Limited warranties granted on products are to the initial customer end-user and are not transferable. OUR LIABILITY UNDER THIS WARRANTY SHALL IN ANY CASE BE LIMITED TO THE INVOICE VALUE OF THE PRODUCT SOLD AND BCI SHALL NOT BE LIABLE TO ANYONE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES ARISING FROM THE USE OF ITS PRODUCTS OR THE SALE THEREOF. We make NO WARRANTY AS TO THE MERCHANTABILITY OF ANY GOODS, OR THAT THEY ARE FIT FOR ANY PARTICULAR PURPOSE OR END APPLICATION NOR DO WE MAKE ANY WARRANTY, EXPRESSED OR IMPLIED OTHER THAN AS STATED ABOVE.
<table>
<thead>
<tr>
<th>No</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>help</td>
<td>List commands</td>
</tr>
<tr>
<td>2</td>
<td>ipconfig</td>
<td>Get server IP address</td>
</tr>
<tr>
<td>3</td>
<td>route</td>
<td>Route receiver to transmitter</td>
</tr>
<tr>
<td>4</td>
<td>uart</td>
<td>Set transmitter/receiver uart parameters</td>
</tr>
<tr>
<td>5</td>
<td>video_scaler</td>
<td>Set video scaler mode</td>
</tr>
<tr>
<td>6</td>
<td>default</td>
<td>Set device to default settings</td>
</tr>
<tr>
<td>7</td>
<td>reboot_device</td>
<td>Reboot device</td>
</tr>
<tr>
<td>8</td>
<td>default_server</td>
<td>Set server to factory defaults</td>
</tr>
<tr>
<td>9</td>
<td>rename_device</td>
<td>Rename an old device name to a new name</td>
</tr>
<tr>
<td>10</td>
<td>get_version</td>
<td>Get device version</td>
</tr>
<tr>
<td>11</td>
<td>get_route</td>
<td>Get input or output route status</td>
</tr>
<tr>
<td>12</td>
<td>get_uart</td>
<td>Get uart parameters</td>
</tr>
<tr>
<td>13</td>
<td>get_outputs</td>
<td>List all receivers in the network</td>
</tr>
<tr>
<td>14</td>
<td>get_inputs</td>
<td>List all transmitters in the network</td>
</tr>
<tr>
<td>15</td>
<td>get_video_active</td>
<td>Get transmitter or receiver video active status</td>
</tr>
<tr>
<td>16</td>
<td>get_video_scaler</td>
<td>Get video scaler mode</td>
</tr>
<tr>
<td>17</td>
<td>scanwifi</td>
<td>List all available Wifi networks</td>
</tr>
<tr>
<td>18</td>
<td>setupwifi</td>
<td>Set Wifi credentials</td>
</tr>
<tr>
<td>19</td>
<td>setuphotspot</td>
<td>Set to hotspot mode</td>
</tr>
<tr>
<td>20</td>
<td>uart_mode</td>
<td>Set device UART to pass-through or control mode</td>
</tr>
<tr>
<td>21</td>
<td>get_uart_mode</td>
<td>Get uart mode</td>
</tr>
<tr>
<td>22</td>
<td>uartstr</td>
<td>Injects strings into an endpoint’s RS232 interface</td>
</tr>
</tbody>
</table>
API COMMANDS

<table>
<thead>
<tr>
<th>No</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>openport</td>
<td>Forwards commands to device’s serial port until ‘closeport’ is received.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Creates a “virtual” bi-directional port</td>
</tr>
<tr>
<td>24</td>
<td>audio_level</td>
<td>Set audio volume level</td>
</tr>
<tr>
<td>25</td>
<td>audio_step</td>
<td>Step audio volume up or down</td>
</tr>
<tr>
<td>26</td>
<td>audio_mute</td>
<td>Mute audio</td>
</tr>
<tr>
<td>27</td>
<td>get_audio_level</td>
<td>Get audio volume level</td>
</tr>
<tr>
<td>28</td>
<td>get_audio_mute</td>
<td>Get audio mute state</td>
</tr>
<tr>
<td>29</td>
<td>restore_preset</td>
<td>Restore a preset</td>
</tr>
<tr>
<td>30</td>
<td>get_presets</td>
<td>Get list of saved presets</td>
</tr>
<tr>
<td>31</td>
<td>save_preset</td>
<td>Save current routing configuration to a preset</td>
</tr>
<tr>
<td>32</td>
<td>delete_preset</td>
<td>Delete a preset</td>
</tr>
</tbody>
</table>
API COMMANDS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>List Commands</td>
</tr>
</tbody>
</table>

Syntax
```
help
```

Command Example
```
help
```

Command Response
```
(Lists commands)
```

ipconfig

Syntax
```
ipconfig
```

Description
Display the IP addresses of the MSC controller

Command Example
```
ipconfig
```

Command Response
```
192.168.1.117 (IP address of WiFi interface)
172.16.2.44  (IP address of USB secondary Ethernet interface)
```

route

Syntax
```
route <output> <input>
```

Description
Route receiver to transmitter

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| <output> | output = receiver name
*names are case sensitive | User defined |
| <input> | input = transmitter name
*names are case sensitive | User defined |

Command Example
```
route OUT1 IN1
```

Command Response
```
Routing OUT1 to IN1
```

uart

Syntax
```
uart <device_name> <baud rate> <data bits> <parity> <stop bits> <line termination> <format>
```

Description
Set transmitter/receiver UART parameters

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device name></td>
<td>Receiver or transmitter name</td>
<td>User defined</td>
</tr>
<tr>
<td><baud rate></td>
<td>Baud rate</td>
<td>1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200, 128000, 256000</td>
</tr>
<tr>
<td><data bits></td>
<td>Data bits</td>
<td>6, 7 or 8</td>
</tr>
<tr>
<td><parity></td>
<td>Parity</td>
<td>none, odd, or even</td>
</tr>
<tr>
<td><stop bits></td>
<td>Stop bits</td>
<td>1 or 2</td>
</tr>
<tr>
<td><line termination></td>
<td>End-of-line termination</td>
<td>CR, LF, or CR+LF</td>
</tr>
<tr>
<td><format></td>
<td>Character format</td>
<td>hex or ascii</td>
</tr>
</tbody>
</table>
Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>uart OUT1 9600 8 none 1</code></td>
<td>Successfully changed OUT1 configuration (9600-8n1)</td>
</tr>
</tbody>
</table>

Note: Default settings is
- baud rate: 115200
- data bits: 8
- parity: none
- stop bits: 1
- line terminator: none
- format: ascii

video_scaler

Syntax

```
video_scaler <output> <mode>
```

Description
Set video scaler mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><output></td>
<td>Receiver name</td>
<td>User defined</td>
</tr>
<tr>
<td><mode></td>
<td>Scaler resolution</td>
<td>0=bypass, 1=auto, 2=1080p50, 3=1080p60, 4=2160p25, 5=2160p30, 6=1366x768, 7=1440x900, 8=1920x1200, 9=1400x1050</td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>video_scaler OUT1 3</code></td>
<td>Successfully changed RX configuration</td>
</tr>
</tbody>
</table>

Note: Default setting is Bypass (Scaler is OFF)

default

Syntax

```
default <device_name>
```

Description
Set device to default settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>transmitter or receiver name</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>default OUT1</code></td>
<td>Command accepted</td>
</tr>
</tbody>
</table>
API COMMANDS

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>reboot_device</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

reboot_device `<device_name>`

Description
Reboot device

Parameter

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><device_name></code></td>
<td>transmitter or receiver name</td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>reboot OUT1</td>
<td></td>
</tr>
</tbody>
</table>

Command Response
Rebooting decoder

default_server

Syntax

default_server

Description
Set server to factory default settings

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>default_server</td>
<td></td>
</tr>
</tbody>
</table>

Command Response
LBN_MSC Console version 1.1.x

rename_device

Syntax

rename_device `<old_name>` `<new_name>`

Description
Rename an old device name to a new name

Parameter

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><old_name></code></td>
<td>Old device name</td>
</tr>
<tr>
<td><code><new_name></code></td>
<td>New device name</td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>rename_device OUT1 OUT1-new</td>
<td></td>
</tr>
</tbody>
</table>

Command Response
Successfully changed device name from OUT1 to OUT1-new

get_version

Syntax

get_version `<device_name>`

Description
Get device version

Parameter

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><device_name></code></td>
<td>transmitter or receiver</td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_version OUT1</td>
<td></td>
</tr>
</tbody>
</table>

Command Response
A6.4.12 Build 2204
get_route

Syntax

get_route <device_name>

Description

Get input or output route status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>transmitter or receiver</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_route OUT1</td>
<td>IN1</td>
</tr>
</tbody>
</table>

get_uart

Syntax

get_uart <device_name>

Description

Get UART parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>transmitter or receiver</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_uart OUT1</td>
<td>OUT1: baud rate: 115200</td>
</tr>
<tr>
<td></td>
<td>data bits: 8</td>
</tr>
<tr>
<td></td>
<td>parity: none</td>
</tr>
<tr>
<td></td>
<td>stop bits: 1</td>
</tr>
<tr>
<td></td>
<td>Line terminator: CR</td>
</tr>
<tr>
<td></td>
<td>format: hex</td>
</tr>
</tbody>
</table>

get_outputs

Syntax

get_outputs

Description

List all receivers in the network

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_outputs</td>
<td>OUT1, OUT2</td>
</tr>
</tbody>
</table>

get_inputs

Syntax

get_inputs

Description

List all transmitters in the network

Command Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_inputs</td>
<td>IN1, IN2</td>
</tr>
</tbody>
</table>
get_video_active

Syntax

get_video_active <device_name>

Description

Get transmitter or receiver video active status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>transmitter or receiver</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

Command Response

get_video_active OUT1

OUT1 <state>

<state>: Idle or Active

get_video_scaler

Syntax

get_video_scaler <output>

Description

Get video scaler mode status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><output></td>
<td>Receiver name</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

Command Response

get_video_scaler OUT1

<scaler state>

<scaler state>: bypass, auto, 1080p50, 1080p60, 2160p25, 2160p30, 1366x768, 1440x900, 1920x1200, 1400x1050

scanwifi

Syntax

scanwifi

Description

List all available WiFi networks

*Only works when hotspot mode is OFF

Command Example

Command Response

scanwifi

response:

SSID: network name-1
SSID: network name-2
SSID: network name-3
API COMMANDS

setupwifi

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setupwifi <SSID> <password></td>
<td>Set WiFi credentials to connect the NUC to a WiFi access point</td>
</tr>
</tbody>
</table>

Parameter	**Description**	**Range**
<SSID> | Network name | User defined
<password> | Wifi password | User defined

Command Example	**Command Response**
setupwifi network-1 1234 | None

uart_mode

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>uart_mode <device_name> <mode></td>
<td>Set device UART to pass-through or control mode</td>
</tr>
</tbody>
</table>

Parameter	**Description**	**Range**
<device_name> | Transmitter or receiver | User defined
<mode> | Uart mode | 0= pass-through, 1= control external device or use uartstr

Command Example	**Command Response**
uart_mode OUT1 0 | uart mode set to pass-thru

Note: Default setting is Pass-through

get_uart_mode

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_uart_mode <device_name></td>
<td></td>
</tr>
</tbody>
</table>

Parameter	**Description**	**Range**
<device_name> | Transmitter or receiver | User defined

Command Example	**Command Response**
get_uart_mode OUT1 | <device_name> <uart state>
<uart state>: “uart mode is pass-thru” or “uart mode set to control external device or use uartstr”
uartstr

Syntax

```text
uartstr <device_name> <string>
```

Description

Injects strings into an endpoint's RS232 interface
*uart_mode must be set to 1 for the device

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>Transmitter or receiver name</td>
<td>User defined</td>
</tr>
<tr>
<td><string></td>
<td>ASCII string</td>
<td>User defined</td>
</tr>
<tr>
<td></td>
<td>HEX pairs of HEX digits separated by a space.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strings with spaces must be included within quotes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>`<string_with_spaces_>"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ex) “1a 2b 0f”</td>
<td></td>
</tr>
</tbody>
</table>

Command Example

<table>
<thead>
<tr>
<th>ASCII Example:</th>
<th>Command Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>uartstr RX1 turnontv</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEX Example:</th>
<th>Command Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>uarstr RX1 “05 f2 a8 e2”</td>
<td>None</td>
</tr>
</tbody>
</table>

openport

Syntax

```text
openport <device_name>
```

Description

Forwards commands to device's serial port until 'closeport' is received.
*uart_mode must be set to 1 for the device

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>Transmitter or receiver name</td>
<td>User defined</td>
</tr>
</tbody>
</table>
audio_level

Syntax

```
audio_level <device_name> <level>
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>Transmitter or receiver name</td>
<td>User defined</td>
</tr>
<tr>
<td><level></td>
<td>Audio level</td>
<td>0~80</td>
</tr>
</tbody>
</table>

Command Example

```
audio_level OUT1 70
```

Command Response

OUT1 volume set to 70

audio_step

Syntax

```
audio_step <device_name> <direction>
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>Transmitter or receiver name</td>
<td>User defined</td>
</tr>
<tr>
<td><direction></td>
<td>Step audio volume up or down</td>
<td>up or down (step size = 4)</td>
</tr>
</tbody>
</table>

Command Example

```
audio_step OUT1 down
```

Command Response

OUT1 volume set to <audio_level>

audio_mute

Syntax

```
audio_mute <device_name> <state>
```

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>Transmitter or receiver name</td>
<td>User defined</td>
</tr>
<tr>
<td><state></td>
<td>Audio status</td>
<td>1=mute, 0=unmute</td>
</tr>
</tbody>
</table>

Command Example

```
audio_mute OUT1 1
```

Command Response

OUT1 muted

Default settings is unmute
get_audio_level

Syntax

get_audio_level <device_name>

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>Transmitter or receiver name</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

Command Response

get_audio_level OUT1
OUT1 audio level is <level>

get_audio_mute

Syntax

get_audio_mute <device_name>

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><device_name></td>
<td>Transmitter or receiver name</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

Command Response

get_audio_mute OUT1
OUT1 is <state>
<state>: muted, umuted

restore_preset

Syntax

restore_preset <preset_name>

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td><preset_name></td>
<td>Preset name (no spaces)</td>
<td>User defined</td>
</tr>
</tbody>
</table>

Command Example

Command Response

Routing <tx1_name> to <rx1_name>
Routing <tx2_name> to <rx2_name>
Routing <tx3_name> to <rx3_name>

*Lists all routes applied by the preset